
International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012                                                                                  1 
ISSN 2229-5518 

  

IJSER © 2012 

http://www.ijser.org  
 

Implementation of Advanced Encryption Standard 
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Abstract—Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity 
authentication and data origin authentication. In data and telecommunications, cryptography is necessary when communicating over any unreliable 
medium, which includes any network particularly the internet. In this paper, a 128 bit AES encryption and Decryption by using Rijndael algorithm 
(Advanced Encryption Standard algorithm) is been made into a synthesizable using Verilog code which can be easily implemented on to FPGA. The 
algorithm is composed of three main parts: cipher, inverse cipher and Key Expansion. Cipher converts data to an unintelligible form called plaintext. Key 
Expansion generates a Key schedule that is used in cipher and inverse cipher procedure. Cipher and inverse cipher are composed of special number of 
rounds. For the AES algorithm, the number of rounds to be performed during the execution of the algorithm uses a round function that is composed of 
four different byte-oriented transformations: Sub Bytes, Shift Rows, Mix columns and Add Round Key. 
 
Index Terms—Advanced Encryption Standard, Cryptography, Decryption, Encryption. 
 
 

I. INTRODUCTION 
HE Cryptography plays an important role in the security of 

data transmission [1]. This paper addresses efficient hardware 
implementation of the AES (Advanced Encryption Standard) 
algorithm and describes the design and performance testing of 
Rijndael algorithm [3]. A strong focus is placed on high 
throughput implementations, which are required to support 
security for current and future high bandwidth applications 
[5][6][7][8][9]. This implementation will be useful in wireless 
security like military communication and mobile telephony 
where there is a gayer emphasis on the speed of 
communication [5]. This standard specifies the Rijndael 
algorithm, a symmetric block cipher that can process data 
blocks of 128 bits, using cipher keys with lengths of 128,192, 
and 256 bits [2]. Throughout the remainder of this standard, 
the algorithm specified herein will be referred to as ―the AES 
algorithm.‖ The algorithm may be used with the three 
different key lengths indicated above, and therefore these 
different ―flavors‖ may be referred to as ―AES-128‖, ―AES-
192‖, and ―AES-256‖. 

A. AES Algorithm 

AES is short for Advanced Encryption Standard and is a 
United States encryption standard defined in Federal 
Information Processing Standard (FIPS) 192. AES is the most 
recent of the four current algorithms approved for federal us 
in the United States. AES is a symmetric encryption algorithm 
processing data in block of 128 bits. AES is  
symmetric since the same key is used for encryption and the 
reverse transformation, decryption [2]. The only secret 
necessary to keep for security is the key. AES may configured 
to use different key-lengths, the standard defines 3 lengths 
and the resulting algorithms are named AES-128, AES-192 
and AES-256 respectively to indicate the length in bits of the 
key. The older standard, DES or Data Encryption Standard. 
DES is upto 56bits only [4]. To overcome the disadvantages of 
des algorithm, the new standard is AES algorithm. This 

standard explicitly defines the allowed values for the key 
length (Nk), block size (Nb), and number of rounds (Nr). 

B. AES Algorithm Specification 

For the AES algorithm, the length of the input block, the 
output block and the State is 128 bits. This is represented by 
Nb = 4, which reflects the number of 32-bit words (number of 
columns) in the State. 

  
 
Fig 1: General structure of AES algorithm 
 
An implementation of the AES algorithm shall support at least 
one of the three key lengths: 128, 192, or 256 bits (i.e., Nk = 4, 6, 
or 8, respectively). Implementations may optionally support 
two or three key lengths, which may promote the 
interoperability of algorithm implementations. For the AES 
algorithm, the length of the Cipher Key, K, is 128, 192 or 256 
bits. The key length is represented by Nk = 4, 6, or 8which 
reflects the number of 32-bit words (number of columns) in 
the Cipher Key. For the AES algorithm, the number of rounds 
to be performed during the execution of the algorithm is 
dependent on the key size. The number of rounds is 
represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when 
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Nk = 6, and Nr = 14 when Nk = 8. The only Key-Block-Round 
combinations that conform to this standard are given in Table 
1. 
 

  Bit 
pattern 

    Key Length 
    (NK Words) 

 Block Size 
(NB Words) 

 No Of 
Rounds 
 (NR Words) 

AES-
128 

            4               4               10 

AES-
192 

            6               4               12 

AES-
256 

            8               4               14 

 
Table 1. Key-Block-Round Combinations. 
 
For both its Cipher and Inverse Cipher, the AES algorithm 
uses a round function that is composed of four different byte-
oriented transformations: 
1) Byte substitution using a substitution table (S-box),  
2) Shifting rows of the State array by different offsets, 
3) Mixing the data within each column of the State array, and  
4) Adding a Round Key to the State. 
 

II. ENCRYPTION 

In encryption mode, the initial key is added to the input value 
at the very beginning, which is called an initial round. This is 
followed by 9 iterations of a normal round and ends with a 
slightly modified final round, as one can see in Figure 2. 
During one normal round the following operations are 
performed in the following order: Sub Bytes, Shift Rows, Mix 
Columns, and Add Round key. The final round is a normal 
round without the Mix Columns stage. 

 
                        Fig 2: General structure of Encryption. 
 

A. Steps in AES Encryption  

 Sub Bytes—a non-linear substitution step where each 
byte is replaced with another    according to a lookup 
table.  

 Shift Rows—a transposition step where each row of 
the state is shifted cyclically a certain number of 
steps.  

 Mix Columns—a mixing operation which operates on 
the columns of the state, combining the four bytes in 
each column  

 Add Round Key—each byte of the state is combined 
with the round key; each round key is derived from 
the cipher key using a key schedule 

B. Sub bytes Transformation 

The Sub Bytes transformation is a non-linear byte substitution 
that operates independently on each byte of the State using a 
substitution table (S-box). This S-box which is invertible is 
constructed by composing two transformations: 
1. Take the multiplicative inverse in the finite field GF (28), the 
element {00} is mapped to itself.  
2. Apply the following affine transformation (over GF (2)): 
For 0<i<8, where bi is the ith bit of the byte, and ci is the ith bit 
of a byte c with the 
Value {63} or {01100011}. Here and elsewhere, a prime on a 
variable (e.g., b) 
Indicates that the variable is to be updated with the value on 
the right. In matrix form, the affine transformation element of 
the S-box can be expressed as: 

 

                           Fig 3: Affine transformation 

 

 

 

 

                                           Fig 4: S-BOX 

 

Fig.5 Effect of the Sub Bytes () transformation on the State. 

 

C. Shift Rows Transformation 

In the Shift Rows transformation, the bytes in the last three 
rows of the State are cyclically shifted over different numbers 

63 7C 77 7B 

CA 82 C9 7D 

B7 FD 93 26 

04 C7 23 C3 
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of bytes (offsets). The first row is not shifted at all, the second 
row is shifted by one the third row by two, and the fourth row 
by three bytes to the left. Specifically, the Shift Rows 
transformation proceeds as follows: 
The shift value shift(r,Nb) depends on the row number, r, as 
follows (recall that Nb = 4): shift(1,4) 1; shift(2,4) 2 ; shift(3,4) 3 
.This has the effect of moving bytes to ―lower‖ positions in the 
row (i.e., lower values of c in a given row), while the ―lowest‖ 
bytes wrap around into the ―top‖ of the row (i.e., higher 
values of c in a given row) 

 

Fig.6 .Shift Rows cyclically shifts the last three rows in the 
State. 
 

D. MixColumns Transformation 

The Mix Columns transformation operates on the State 
column-by-column, treating each column as a four-term 
polynomial. 
 

 
 

 
 
 
 

(0  c < Nb)  
 
As a result of this multiplication, the four bytes in a column 
are replaced by the following: 
 

 S’0,c  = ({02} • s0,c) +  ({03} • s1,c) +  s2,c + s3,c  

 S’1,c   = s0,c + ({02} •  s1,c) +  ({03} • s2,c) + s3,c  

 S’2,c   = s0,c + s1,c + ({02} • s2,c)  + ({03} • s3,c)  

 S’3,c   = ({03} • s0,c) + s1,c + s2,c + ({02} • s3,c)  

 

 

 

Fig.7. Mix Columns operates on the State column-by-column. 

 

 

E. Add round Key Transformation 

 In the Add Round Key transformation, a Round Key is added to 
the  
State by a simple bitwise XOR operation. Each Round Key 
consists  
of Nb words from the key schedule.Those Nb words are each 
added 
 into  the columns of the State, such that [wi] are the key schedule  
words, and round is a value in the range 0 round Nr. In the 
Cipher,  
the  initial Round Key addition occurs when round = 0, prior to 
the 
 first application of the round function. The application of the 
Add 
 Round Key  transformation to the Nr rounds of the Cipher 
occurs 
 when 1<round  <Nr. The action of this transformation is 
illustrated  
in Fig. 8, where l =  round * Nb.  
 

 
Fig.8. AddRoundKey XORs each column of the State with a 
word from the key schedule. 
 
 

F. Key Expansion 

The AES algorithm takes the Cipher Key, K, and performs a 
Key Expansion routine to generate a key schedule. The Key 
Expansion generates a total of Nb (Nr + 1) words: the 
algorithm requires an initial set of Nb words, and each of the 
Nr rounds requires Nb words of key data. The resulting key 
schedule consists of a linear array of 4-byte words, denoted 
[wi ], with i in the range 0 < i < Nb(Nr + 1). The expansion of 
the input key into the key schedule proceeds according to the 
pseudo code. SubWord is a function that takes a four-byte 
input word and applies the S-box to each of the four bytes to 
produce an output word. The function Rot Word takes a word 
[a0,a1,a2,a3] as input, performs a cyclic permutation, and 
returns the word [a1,a2,a3,a0]. The round constant word array, 
Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with 
x i-1 being powers of x (x is denoted as {02}) in the field 
GF(28). The first Nk words of the expanded key are filled with 
the Cipher Key. Every  following word, w[i], is equal to the 
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XOR of the previous word, w[i-1], and the word Nk positions 
earlier, w[i-Nk]. For words in positions that are a multiple of 
Nk, a transformation is applied to w[i-1] prior to the XOR, 
followed by an XOR with a round constant, Rcon[i]. This 
transformation consists of a cyclic shift of the bytes in a word 
(RotWord), followed by the application of a table lookup to all 
four bytes of the word (SubWord). It is important to note that 
the Key Expansion routine for 256-bit Cipher Keys (Nk = 8) is 
slightly different than for 128- and 192-bit Cipher Keys. If Nk 
= 8 and i-4 is a multiple of Nk, then SubWord () is applied to w 
[i-1] prior to the XOR. 

 
 
Fig.9.key expansion 

 

III. DECRYPTION 

In decryption mode, the operations are in reverse order 
compared to their order in encryption mode. Thus it starts 
with an initial round, followed by 9 iterations of an inverse 
normal round and ends with an AddRoundKey. An inverse 
normal round consists of the following operations in this 
order: AddRoundKey, InvMixColumns, InvShiftRows, and 
InvSubBytes. An initial round is an inverse normal round 
without the InvMixColumns. 

 
 
                         Fig 10: General structure of Decryption. 

A. Inv Shift rows Transformation 

InvShiftRows is the inverse of the ShiftRows transformation. 
The bytes in the last three rows of the State are cyclically 
shifted over different numbers of bytes (offsets). The first row, 
r = 0, is not shifted. The bottom three rows are cyclically 

shifted by Nb - shift(r, Nb) bytes, where the shift value 
shift(r,Nb) depends on the row number.  

 
 
Fig.11.InvShiftRows transformation 

B. Inv Subbytes Transformation  

InvSubBytes is the inverse of the byte substitution 
transformation, in which the inverse Sbox is applied to each 
byte of the State. This is obtained by applying the inverse of 
the affine transformation followed by taking the 
multiplicative inverse in GF (28).The inverse S-box used in the 
InvSubBytes () transformation is presented in Fig 12.  
 

52 09 6A D5 

7C E3 39 82 

54 7B 94 32 

08 2E A1 66 

 

Fig 12: Inverse S-BOX 

C. Inv MixColumns Transformation 

InvMixColumns is the inverse of the MixColumns 
transformation. InvMixColumns operates on the State 
column-by-column, treating each column as a four term 
polynomial. The columns are considered as polynomials over 
GF (28) and multiplied modulo x4 + 1 with a fixed polynomial 
a-1(x), given by a-1(x) = {0b} x3 + {0d} x2 + {09} x + {0e}, this 
can be written as a matrix multiplication. Let 
As a result of this multiplication, the four bytes in a column 
are replaced by the following: 
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s3,c)  

 S’2,c = ({0d} • s0,c) +  ({09} • s1,c) + ({0e} • s2,c) + ({0b} • 

s3,c)   

 S’3,c = ({0b} • s0,c) +  ({0d} • s1,c) + ({09} • s2,c) + ({0e} • 

s3,c)   

 

D. Inverse of the Addroundkey Transformation 

AddRoundKey is its own inverse, since it only involves an 
application of the XOR operation. Equivalent Inverse Cipher 
transformations differ from that of the Cipher, while the form 
of the key schedules for encryption and decryption remains 
the same. However, several properties of the AES algorithm 
allow for an Equivalent Inverse Cipher that has the same 
sequence of transformations as the Cipher (with the 
transformations replaced by their inverses). This is 
accomplished with a change in the key schedule. The two 
properties that allow for this Equivalent Inverse Cipher are as 
follows:  The Sub Bytes and Shift Rows transformations 
commute; that is, a Sub Bytes transformation immediately 
followed by a Shift Rows transformation is equivalent to a 
Shift Rows transformation immediately followed by a Sub 
Bytes transformation.  
The same is true for their inverses, InvSubBytes and 
InvShiftRows. The column mixing operations - MixColumns 
and InvMixColumns – are linear with respect to the column 
input, which means Inv MixColumns(state XOR Round Key) 
=InvMixColumns(state)XORInvMixColumns(RoundKey).The
se properties allow the order of InvSubBytes and 
InvShiftRows transformations to be reversed. The order of the 
AddRoundKey and InvMixColumns transformations can also 
be reversed, provided that the columns (words) of the 
decryption key schedule are modified using the 
InvMixColumns transformation. The equivalent inverse 
cipher is defined by reversing the order of the InvSubBytes 
and InvShiftRows transformations and by reversing the order 
of the AddRoundKey and  InvMixColumns transformations 
used in the ―round loop‖ after first modifying the decryption 
key schedule for round = 1 to Nr-1 using the InvMixColumns 
transformation. The first and last Nb words of the decryption 
key schedule shall not be modified in this manner.  

IV. IMPLEMENTATION RESULTS AND 

DISCUSSION 

This paper was successfully completed with the 
implementation of Encryption and decryption for AES 
algorithm. We implemented different sub modules for AES 
algorithm by using Verilog code. This implementation will be 
useful in wireless security like military communication and 
mobile telephony where there is a gayer emphasis on the 
speed of communication.  
 
 

 
                         
                                   Fig 13.Encryption Result 
Encryption simulation was successfully completed by the use 
of key expansion and transformations of shift Rows, sub 
bytes, mix columns, add round keys. 
 
 

 
                              
                                  Fig 14.Decryption Result 
 
Decryption simulation was successfully completed by the use 
of key expansion and transformations of inverse shift Rows, 
inverse sub bytes, inverse mix columns, inverse add round 
keys. 
 

V. CONCLUSION AND FUTURE WORK 

This paper was successfully completed with the implementation of 
AES algorithm on 128 bit message. The encrypted cipher text and 
the decrypted text are analyzed and proved to be correct. The 
encryption efficiency of the proposed AES algorithm was studied 
and met with satisfactory results. The following can be considered   
for the future works of this paper: 

 An extra modification to be used for 192 bit and 
256 bit key AES which is an extension of the 
present paper. 
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 Power reduction and area minimization for the 
proposed AES algorithm is to be device. 

 LCD can be used for display. 

VI. AES APPLICATIONS 

AES Encryption and Decryption has many applications. It is used 
in cases where data is too sensitive that only the authorized people 
are supposed to know and not to the rest. The following are the 
various applications 

Secure Communication 

            - Smart Cards 
- RFID. 
- ATM networks. 
- Image encryption 
 

 
Secure Storage 
               - Confidential Cooperate Documents 

- Government Documents 
- FBI Files 

               - Personal Storage Devices 
               - Person Information Protection 
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