
International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Implementation of Advanced Encryption Standard
Algorithm

M.Pitchaiah, Philemon Daniel, Praveen

Abstract—Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity
authentication and data origin authentication. In data and telecommunications, cryptography is necessary when communicating over any unreliable
medium, which includes any network particularly the internet. In this paper, a 128 bit AES encryption and Decryption by using Rijndael algorithm
(Advanced Encryption Standard algorithm) is been made into a synthesizable using Verilog code which can be easily implemented on to FPGA. The
algorithm is composed of three main parts: cipher, inverse cipher and Key Expansion. Cipher converts data to an unintelligible form called plaintext. Key
Expansion generates a Key schedule that is used in cipher and inverse cipher procedure. Cipher and inverse cipher are composed of special number of
rounds. For the AES algorithm, the number of rounds to be performed during the execution of the algorithm uses a round function that is composed of
four different byte-oriented transformations: Sub Bytes, Shift Rows, Mix columns and Add Round Key.

Index Terms—Advanced Encryption Standard, Cryptography, Decryption, Encryption.

I. INTRODUCTION
HE Cryptography plays an important role in the security of

data transmission [1]. This paper addresses efficient hardware
implementation of the AES (Advanced Encryption Standard)
algorithm and describes the design and performance testing of
Rijndael algorithm [3]. A strong focus is placed on high
throughput implementations, which are required to support
security for current and future high bandwidth applications
[5][6][7][8][9]. This implementation will be useful in wireless
security like military communication and mobile telephony
where there is a gayer emphasis on the speed of
communication [5]. This standard specifies the Rijndael
algorithm, a symmetric block cipher that can process data
blocks of 128 bits, using cipher keys with lengths of 128,192,
and 256 bits [2]. Throughout the remainder of this standard,
the algorithm specified herein will be referred to as ―the AES
algorithm.‖ The algorithm may be used with the three
different key lengths indicated above, and therefore these
different ―flavors‖ may be referred to as ―AES-128‖, ―AES-
192‖, and ―AES-256‖.

A. AES Algorithm

AES is short for Advanced Encryption Standard and is a
United States encryption standard defined in Federal
Information Processing Standard (FIPS) 192. AES is the most
recent of the four current algorithms approved for federal us
in the United States. AES is a symmetric encryption algorithm
processing data in block of 128 bits. AES is
symmetric since the same key is used for encryption and the
reverse transformation, decryption [2]. The only secret
necessary to keep for security is the key. AES may configured
to use different key-lengths, the standard defines 3 lengths
and the resulting algorithms are named AES-128, AES-192
and AES-256 respectively to indicate the length in bits of the
key. The older standard, DES or Data Encryption Standard.
DES is upto 56bits only [4]. To overcome the disadvantages of
des algorithm, the new standard is AES algorithm. This

standard explicitly defines the allowed values for the key
length (Nk), block size (Nb), and number of rounds (Nr).

B. AES Algorithm Specification

For the AES algorithm, the length of the input block, the
output block and the State is 128 bits. This is represented by
Nb = 4, which reflects the number of 32-bit words (number of
columns) in the State.

Fig 1: General structure of AES algorithm

An implementation of the AES algorithm shall support at least
one of the three key lengths: 128, 192, or 256 bits (i.e., Nk = 4, 6,
or 8, respectively). Implementations may optionally support
two or three key lengths, which may promote the
interoperability of algorithm implementations. For the AES
algorithm, the length of the Cipher Key, K, is 128, 192 or 256
bits. The key length is represented by Nk = 4, 6, or 8which
reflects the number of 32-bit words (number of columns) in
the Cipher Key. For the AES algorithm, the number of rounds
to be performed during the execution of the algorithm is
dependent on the key size. The number of rounds is
represented by Nr, where Nr = 10 when Nk = 4, Nr = 12 when

T

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Nk = 6, and Nr = 14 when Nk = 8. The only Key-Block-Round
combinations that conform to this standard are given in Table
1.

 Bit
pattern

 Key Length
 (NK Words)

 Block Size
(NB Words)

 No Of
Rounds
 (NR Words)

AES-
128

 4 4 10

AES-
192

 6 4 12

AES-
256

 8 4 14

Table 1. Key-Block-Round Combinations.

For both its Cipher and Inverse Cipher, the AES algorithm
uses a round function that is composed of four different byte-
oriented transformations:
1) Byte substitution using a substitution table (S-box),
2) Shifting rows of the State array by different offsets,
3) Mixing the data within each column of the State array, and
4) Adding a Round Key to the State.

II. ENCRYPTION

In encryption mode, the initial key is added to the input value
at the very beginning, which is called an initial round. This is
followed by 9 iterations of a normal round and ends with a
slightly modified final round, as one can see in Figure 2.
During one normal round the following operations are
performed in the following order: Sub Bytes, Shift Rows, Mix
Columns, and Add Round key. The final round is a normal
round without the Mix Columns stage.

 Fig 2: General structure of Encryption.

A. Steps in AES Encryption

 Sub Bytes—a non-linear substitution step where each
byte is replaced with another according to a lookup
table.

 Shift Rows—a transposition step where each row of
the state is shifted cyclically a certain number of
steps.

 Mix Columns—a mixing operation which operates on
the columns of the state, combining the four bytes in
each column

 Add Round Key—each byte of the state is combined
with the round key; each round key is derived from
the cipher key using a key schedule

B. Sub bytes Transformation

The Sub Bytes transformation is a non-linear byte substitution
that operates independently on each byte of the State using a
substitution table (S-box). This S-box which is invertible is
constructed by composing two transformations:
1. Take the multiplicative inverse in the finite field GF (28), the
element {00} is mapped to itself.
2. Apply the following affine transformation (over GF (2)):
For 0<i<8, where bi is the ith bit of the byte, and ci is the ith bit
of a byte c with the
Value {63} or {01100011}. Here and elsewhere, a prime on a
variable (e.g., b)
Indicates that the variable is to be updated with the value on
the right. In matrix form, the affine transformation element of
the S-box can be expressed as:

 Fig 3: Affine transformation

 Fig 4: S-BOX

Fig.5 Effect of the Sub Bytes () transformation on the State.

C. Shift Rows Transformation

In the Shift Rows transformation, the bytes in the last three
rows of the State are cyclically shifted over different numbers

63 7C 77 7B

CA 82 C9 7D

B7 FD 93 26

04 C7 23 C3

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of bytes (offsets). The first row is not shifted at all, the second
row is shifted by one the third row by two, and the fourth row
by three bytes to the left. Specifically, the Shift Rows
transformation proceeds as follows:
The shift value shift(r,Nb) depends on the row number, r, as
follows (recall that Nb = 4): shift(1,4) 1; shift(2,4) 2 ; shift(3,4) 3
.This has the effect of moving bytes to ―lower‖ positions in the
row (i.e., lower values of c in a given row), while the ―lowest‖
bytes wrap around into the ―top‖ of the row (i.e., higher
values of c in a given row)

Fig.6 .Shift Rows cyclically shifts the last three rows in the
State.

D. MixColumns Transformation

The Mix Columns transformation operates on the State
column-by-column, treating each column as a four-term
polynomial.

(0  c < Nb)

As a result of this multiplication, the four bytes in a column
are replaced by the following:

 S’0,c = ({02} • s0,c) + ({03} • s1,c) + s2,c + s3,c

 S’1,c = s0,c + ({02} • s1,c) + ({03} • s2,c) + s3,c

 S’2,c = s0,c + s1,c + ({02} • s2,c) + ({03} • s3,c)

 S’3,c = ({03} • s0,c) + s1,c + s2,c + ({02} • s3,c)

Fig.7. Mix Columns operates on the State column-by-column.

E. Add round Key Transformation

 In the Add Round Key transformation, a Round Key is added to
the
State by a simple bitwise XOR operation. Each Round Key
consists
of Nb words from the key schedule.Those Nb words are each
added
 into the columns of the State, such that [wi] are the key schedule
words, and round is a value in the range 0 round Nr. In the
Cipher,
the initial Round Key addition occurs when round = 0, prior to
the
 first application of the round function. The application of the
Add
 Round Key transformation to the Nr rounds of the Cipher
occurs
 when 1<round <Nr. The action of this transformation is
illustrated
in Fig. 8, where l = round * Nb.

Fig.8. AddRoundKey XORs each column of the State with a
word from the key schedule.

F. Key Expansion

The AES algorithm takes the Cipher Key, K, and performs a
Key Expansion routine to generate a key schedule. The Key
Expansion generates a total of Nb (Nr + 1) words: the
algorithm requires an initial set of Nb words, and each of the
Nr rounds requires Nb words of key data. The resulting key
schedule consists of a linear array of 4-byte words, denoted
[wi], with i in the range 0 < i < Nb(Nr + 1). The expansion of
the input key into the key schedule proceeds according to the
pseudo code. SubWord is a function that takes a four-byte
input word and applies the S-box to each of the four bytes to
produce an output word. The function Rot Word takes a word
[a0,a1,a2,a3] as input, performs a cyclic permutation, and
returns the word [a1,a2,a3,a0]. The round constant word array,
Rcon[i], contains the values given by [xi-1,{00},{00},{00}], with
x i-1 being powers of x (x is denoted as {02}) in the field
GF(28). The first Nk words of the expanded key are filled with
the Cipher Key. Every following word, w[i], is equal to the



























































c

c

c

c

c

c

c

c

s

s

s

s

s

s

s

s

,3

,2

,1

,0

'

,3

'

,2

'

,1

'

,0

02010103

03020101

01030201

01010302

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

XOR of the previous word, w[i-1], and the word Nk positions
earlier, w[i-Nk]. For words in positions that are a multiple of
Nk, a transformation is applied to w[i-1] prior to the XOR,
followed by an XOR with a round constant, Rcon[i]. This
transformation consists of a cyclic shift of the bytes in a word
(RotWord), followed by the application of a table lookup to all
four bytes of the word (SubWord). It is important to note that
the Key Expansion routine for 256-bit Cipher Keys (Nk = 8) is
slightly different than for 128- and 192-bit Cipher Keys. If Nk
= 8 and i-4 is a multiple of Nk, then SubWord () is applied to w
[i-1] prior to the XOR.

Fig.9.key expansion

III. DECRYPTION

In decryption mode, the operations are in reverse order
compared to their order in encryption mode. Thus it starts
with an initial round, followed by 9 iterations of an inverse
normal round and ends with an AddRoundKey. An inverse
normal round consists of the following operations in this
order: AddRoundKey, InvMixColumns, InvShiftRows, and
InvSubBytes. An initial round is an inverse normal round
without the InvMixColumns.

 Fig 10: General structure of Decryption.

A. Inv Shift rows Transformation

InvShiftRows is the inverse of the ShiftRows transformation.
The bytes in the last three rows of the State are cyclically
shifted over different numbers of bytes (offsets). The first row,
r = 0, is not shifted. The bottom three rows are cyclically

shifted by Nb - shift(r, Nb) bytes, where the shift value
shift(r,Nb) depends on the row number.

Fig.11.InvShiftRows transformation

B. Inv Subbytes Transformation

InvSubBytes is the inverse of the byte substitution
transformation, in which the inverse Sbox is applied to each
byte of the State. This is obtained by applying the inverse of
the affine transformation followed by taking the
multiplicative inverse in GF (28).The inverse S-box used in the
InvSubBytes () transformation is presented in Fig 12.

52 09 6A D5

7C E3 39 82

54 7B 94 32

08 2E A1 66

Fig 12: Inverse S-BOX

C. Inv MixColumns Transformation

InvMixColumns is the inverse of the MixColumns
transformation. InvMixColumns operates on the State
column-by-column, treating each column as a four term
polynomial. The columns are considered as polynomials over
GF (28) and multiplied modulo x4 + 1 with a fixed polynomial
a-1(x), given by a-1(x) = {0b} x3 + {0d} x2 + {09} x + {0e}, this
can be written as a matrix multiplication. Let
As a result of this multiplication, the four bytes in a column
are replaced by the following:

 S’0,c = ({0e} • s0,c) + ({0b} • s1,c) + ({0d} • s2,c) + ({09} •

s3,c)

 S’1,c = ({09} • s0,c) + ({0e} • s1,c) + ({0b} • s2,c) + ({0d} •



























































c

c

c

c

c

c

c

c

s

s

s

s

edb

bed

dbe

dbe

s

s

s

s

,3

,2

,1

,0

'

,3

'

,2

'

,1

'

,0

00900

00090

00009

09000

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

s3,c)

 S’2,c = ({0d} • s0,c) + ({09} • s1,c) + ({0e} • s2,c) + ({0b} •

s3,c)

 S’3,c = ({0b} • s0,c) + ({0d} • s1,c) + ({09} • s2,c) + ({0e} •

s3,c)

D. Inverse of the Addroundkey Transformation

AddRoundKey is its own inverse, since it only involves an
application of the XOR operation. Equivalent Inverse Cipher
transformations differ from that of the Cipher, while the form
of the key schedules for encryption and decryption remains
the same. However, several properties of the AES algorithm
allow for an Equivalent Inverse Cipher that has the same
sequence of transformations as the Cipher (with the
transformations replaced by their inverses). This is
accomplished with a change in the key schedule. The two
properties that allow for this Equivalent Inverse Cipher are as
follows: The Sub Bytes and Shift Rows transformations
commute; that is, a Sub Bytes transformation immediately
followed by a Shift Rows transformation is equivalent to a
Shift Rows transformation immediately followed by a Sub
Bytes transformation.
The same is true for their inverses, InvSubBytes and
InvShiftRows. The column mixing operations - MixColumns
and InvMixColumns – are linear with respect to the column
input, which means Inv MixColumns(state XOR Round Key)
=InvMixColumns(state)XORInvMixColumns(RoundKey).The
se properties allow the order of InvSubBytes and
InvShiftRows transformations to be reversed. The order of the
AddRoundKey and InvMixColumns transformations can also
be reversed, provided that the columns (words) of the
decryption key schedule are modified using the
InvMixColumns transformation. The equivalent inverse
cipher is defined by reversing the order of the InvSubBytes
and InvShiftRows transformations and by reversing the order
of the AddRoundKey and InvMixColumns transformations
used in the ―round loop‖ after first modifying the decryption
key schedule for round = 1 to Nr-1 using the InvMixColumns
transformation. The first and last Nb words of the decryption
key schedule shall not be modified in this manner.

IV. IMPLEMENTATION RESULTS AND

DISCUSSION

This paper was successfully completed with the
implementation of Encryption and decryption for AES
algorithm. We implemented different sub modules for AES
algorithm by using Verilog code. This implementation will be
useful in wireless security like military communication and
mobile telephony where there is a gayer emphasis on the
speed of communication.

 Fig 13.Encryption Result
Encryption simulation was successfully completed by the use
of key expansion and transformations of shift Rows, sub
bytes, mix columns, add round keys.

 Fig 14.Decryption Result

Decryption simulation was successfully completed by the use
of key expansion and transformations of inverse shift Rows,
inverse sub bytes, inverse mix columns, inverse add round
keys.

V. CONCLUSION AND FUTURE WORK

This paper was successfully completed with the implementation of
AES algorithm on 128 bit message. The encrypted cipher text and
the decrypted text are analyzed and proved to be correct. The
encryption efficiency of the proposed AES algorithm was studied
and met with satisfactory results. The following can be considered
for the future works of this paper:

 An extra modification to be used for 192 bit and
256 bit key AES which is an extension of the
present paper.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Power reduction and area minimization for the
proposed AES algorithm is to be device.

 LCD can be used for display.

VI. AES APPLICATIONS

AES Encryption and Decryption has many applications. It is used
in cases where data is too sensitive that only the authorized people
are supposed to know and not to the rest. The following are the
various applications

Secure Communication

 - Smart Cards
- RFID.
- ATM networks.
- Image encryption

Secure Storage
 - Confidential Cooperate Documents

- Government Documents
- FBI Files

 - Personal Storage Devices
 - Person Information Protection

 REFERENCES

[1] A. Lee, NIST Special Publication 800-21, Guideline for
Implementing Cryptography in the Federal Government,

National Institute of Standards and Technology,
November 1999.

[2] J. Daemen and V. Rijmen, The block cipher Rijndael, Smart
Card research and Applications, LNCS 1820, Springer-
Verlag, pp. 288-296.

[3] J. Nechvatal, et. al., Report on the Development of the
Advanced Encryption Standard (AES), National Institute of
Standards and Technology, October 2, 2000.

[4] ―Specification for the Advanced Encryption Standard
(AES),‖ Federal Information Processing Standards
Publication 197, Nov. 2001

[5] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook
of Applied Cryptography, CRC Press, New York, 1997, p.
81-83.

[6] C.-P. Su, T.-F. Lin, C.-T. Huang, and C.-W. Wu, ―A high-
throughput low-cost AES processor,‖ IEEE Commun.
Mag., vol. 41, no. 12, pp.86–91, Dec. 2003.

[7] C.-P. Su, C.-L. Horng, C.-T. Huang, and C.-W. Wu, ―A
configurable AES processor for enhanced security,‖ in
Proc. ASP-DAC, Shanghai, China, Jan. 2005, pp. 361–366.

[8] Rachh, R.R.; Anami, B.S.; Ananda Mohan, P.V. ―Efficient
implementations of S-box and inverse S-box for AES
algorithm,‖ in TENCON 2009 - 2009 IEEE Region 10
Conference , Nov. 2009, pp. 1–6.

[9] Kaur, Swinder; Vig, Renu , ‖ Efficient Implementation of
AES Algorithm in FPGA Device‖ in Conference on
Computational Intelligence and Multimedia Applications,
Nov 2007,pp. 179-187

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5395837&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Defficient+implementation+of+aes+algorithm
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5395837&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Defficient+implementation+of+aes+algorithm
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5395837&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Defficient+implementation+of+aes+algorithm
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375730
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5375730
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4426691&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Defficient+implementation+of+aes+algorithm
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4426691&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Defficient+implementation+of+aes+algorithm

